Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.

نویسندگان

  • Minha Choi
  • Jennifer M. Jacobs
چکیده

Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E's limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R² values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil moisture retrieval from AMSR-E

The Advanced Microwave Scanning Radiometer (AMSR-E) on the Earth Observing System (EOS) Aqua satellite was launched on May 4, 2002. The AMSR-E instrument provides a potentially improved soil moisture sensing capability over previous spaceborne radiometers such as the Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager due to its combination of low frequency and higher...

متن کامل

An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval

Using a high-resolution hydrologic model, a land surface microwave emission model (LSMEM), and an explicit simulation of the orbital and scanning characteristics for the advanced microwave sensing radiometer (AMSR-E), an observing system simulation experiment (OSSE) is carried out to assess the impact of land surface heterogeneity on large-scale retrieval and validation of soil moisture product...

متن کامل

Evaluation of AMSR-E-Derived Soil Moisture Retrievals Using Ground-Based and PSR Airborne Data during SMEX02

A Land Surface Microwave Emission Model (LSMEM) is used to derive soil moisture estimates over Iowa during the Soil Moisture Experiment 2002 (SMEX02) field campaign, using brightness temperature data from the Advanced Microwave Sounding Radiometer (AMSR)-E satellite. Spatial distributions of the near-surface soil moisture are produced using the LSMEM, with data from the North American Land Data...

متن کامل

Spatio-temporal Consistency Analysis of Amsr-e Soil Moisture Data Using Wavelet-based Feature Extraction and One-class Svm

Soil moisture is one of the most important climatic parameters playing an important role in the global climate system. Soil moisture can be derived from in-situ measurements as well as remotely sensed observations. However, these measurements typically lack the spatial and/or temporal resolutions necessary for modeling and applications. Land surface models (LSM) can be used to simulate the land...

متن کامل

Spatially and Temporally Complete Satellite Soil Moisture Data Based on a Data Assimilation Method

Multiple soil moisture products have been generated from data acquired by satellite. However, these satellite soil moisture products are not spatially or temporally complete, primarily due to track changes, radio-frequency interference, dense vegetation, and frozen soil. These deficiencies limit the application of soil moisture in land surface process simulation, climatic modeling, and global c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008